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Abstract. A low density expansion for the pair connectedness in a gas is obtained by 
methods similar to those used for a solid. In the case of an ideal lattice gas a change of 
variable enables the usual expansion for a solid to be re-derived. The new formulation 
allows the use of renormalisation techniques and k-space diagrams. The possibility of 
interactions is also considered. 

1. Introduction 

A standard site percolation model on a crystal lattice is such that each site indepen- 
dently of all others is designated either 'occupied' or 'vacant'. The term occupied has 
a variety of interpretations depending on the use of the model (Essam 1972). The pair 
connectedness Pab of two sites a and b is the probability that there is a nearest- 
neighbour path of occupied sites connecting them (conventionally the sites a and b are 
counted as part of the path). Low-density expansions in powers of p ,  the probability 
of occupation, are usually obtained (Cox and Essam 1976) using the result 

where %ab is the set of two-rooted subgraphs of the lattice (treating the sites as 
vertices, the nearest-neighbour pairs as edges and a and b as root points) and U is the 
number of vertices in g. The 'd-weight', d ( g )  (Arrowsmith and Essam 1977), is zero 
unless g is connected and the derived graph obtained by including the edge [a, b] has 
no articulation points. The graphs which are not excluded by these conditions are 
known as one-irreducible. If %' is a list of such graphs (no two of which are isomorphic, 
except that a graph in which the root points are asymmetrically placed appears twice, 
the initial and final roots being labelled 1 and 2 respectively) equation (1) may be 
written 

Here m(g)  is the number of ways of mapping the vertices of g onto the lattice sites 
such that no two vertices are mapped onto the same site, 1 +a, 2 + b, and adjacent 
vertices are mapped onto nearest-neighbour pairs. The symmetry number s(g) is the 
number of ways of mapping g onto itself with the root points fixed. 

$ Uniti, GNSM di Napoli. 
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Efficient computer programs have been constructed to obtain m (g) for small 
graphs (Martin 1974) but theoretical development is hindered by the non-factorisa- 
tion of m(g) for graphs which may be formed by series parallel combination of smaller 
graphs. Such a factorisation occurs for s ( g )  and d ( g )  but the difficulty with m(g) is 
caused by the restriction of one-to-one mapping. 

The expansion described here is for a gas, the particles of which may be in a 
continuum or on the sites of a lattice (lattice gas) but in the latter case multi- 
occupation is allowed. The expansion is in powers of the density p, and is similar to (2) 
but in the case of the lattice gas the mapping is now many-to-one. The resulting 
factorisation of m (g) allows the use of renormalisation techniques and k-space 
diagrams. 

The expansions for the continuum are of interest in their own right since previous 
work on the continuum model has been restricted to the cluster size distribution. Haan 
and Zwanzig (1977) obtained low-density expansions for this distribution and 
analysed the mean cluster size. Monte Carlo calculations of the distribution have also 
been made (Roberts 1967, Roberts and Storey 1968, Fremlin 1976). 

By interpretingp as the probability that a site is occupied by at least one particle, p 
and p may be simply related and expansion (2) is recovered. 

Recently the Mayer expansion for an imperfect gas (Uhlenbeck and Ford 1962) has 
been extended to include the pair connectedness (Coniglio et a1 1977). The present 
method gives an equivalent result for the ideal gas and is intermediate between the 
Mayer theory and existing percolation theory. For the interacting gas our result is 
expressed in terms of the many-particle distribution functions. The standard Mayer 
theory may then be used to obtain low-density expansions for the latter (Uhlenbeck 
and Ford 1962). 

2. General formulation for the pair connectedness and cluster size 

Consider a gas of n particles distributed in a region R of volume V and let 
Dn(rl, . , . , r,,) be the probability density for finding the particles at rl ,  . . . , r,. In the 
case when all the particles are identical we shall need the s-particle distribution 
functions ns(rl, . . . , r,, n )  as defined by Uhlenbeck and Ford (1962): 

and has the interpretation of being the probability density for finding any s particles in 
positions rl, . . . , r,. The number density p is defined to be n/V. For the ideal gas 
D, = V-" and n, = (n)sV-s. In the thermodynamic limit, n +CO, V + CD, with p fixed, 
n, -* iis(rl, . . . , rs) and this limit is equal to ps  for an ideal gas. 

The discussion will be concerned with paths through the system with the particles 
used as 'stepping stones'. Define the indicator 

rj E w(r i )  
otherwise, (4) 

where w(r i )  is the region which can be reached in a single step from ri. For a 
continuum, w(r i )  is usually a sphere of radius R centred on ri and for a lattice gas w(r i )  
is usually the cells which are adjacent to the cell which contains ri. In both these cases 
y is independent of the particle labels i and j and is symmetric under interchange of ri 
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and rj, however we envisage situations in which y may not have one or both of these 
properties. 

A walk between particles 1 and 2 is an ordered sequence of particles beginning 
with 1 and ending with 2, the intermediate particles being chosen from the remaining 
n - 2 particles. Let W be the set of all such walks. In a given configuration of particles 
a walk w is said to be open if for each step yij(ri ,  ri)  = 1. Let y(w) = 1 or 0 according as 
w is open or closed. Now 

if no walk is open 
if at least one walk is open. 

The pair connectedness P I 2 ( r l ,  r2)  of particles 1 and 2 is the probability density that 
they are at r l  and r2 and that at least one walk between 1 and 2 is open; it is therefore 
given by 

where ( ) is an average over all positions of the particles 3, . . . , n using the proba- 
bility density D ( r l ,  . . . r,,). 

The connecting graph G( W') corresponding to the set of walks W', is the directed 
graph ('Ir, d) where 'Ir is the subset of particles used by at least one of the walks and d 
is the subset of ordered pairs which constitute a step of at least one of the walks. 
G( W') is rooted at 1 and 2 and directed from 1 to 2 and has no multi-arcs; however 
the arcs ( i , j )  and ( j ,  i) may both appear. Equation (6) may be simplified by grouping 
together all W' having the same G( W') (when considered as abstract labelled graphs) 
and weighting each labelled graph with its 'directed d-weight' 

It has been shown (Arrowsmith and Essam 1977) that d(g)  = 0 whenever g is cyclic 
and in this context the arcs ( i , j )  and ( j ,  i) constitute a cycle of length two. It was also 
shown that for a graph which is acyclic and coverable by self-avoiding paths from 1 to 
2 

d(g) = (- p + l  (8) 

where i ( g )  = a --U +2,  the number of algebraically independent paths from 1 to 2. 
Here a = Id/. By construction, all G( W') are coverable, and if we let LIZ be the class 
of all such acyclic labelled graphs with ordinary vertices having labels chosen from 
3 , .  . . , n then (6) becomes 

where 



1920 A Coniglio and J W Essam 

If yij(ri ,  ri) is symmetric we may group together all directed graphs which cor- 
respond to the same undirected graph and write 

Here the ‘d-weight’ is the sum of the ‘directed d-weights’ over all directed graphs 
which correspond to the undirected graph g, and L12 is the corresponding class of 
labelled undirected graphs. 

In the case when all the particles are identical it is more appropriate to consider the 
pair connectedness P ( r l ,  r2) which is the probability density that any two particles are 
at rl and r2 and there is a path between them. Also in this case we may collect 
together all labelled graphs which are the same when the labels are ignored since 
( y (g ) )  is independent of the labelling. Equation (9) now reads 

where @ corresponds to LIZ but now each member of @ carries labels which are a 
specific permutation of 1 , .  . . , U and conventionally 1 and 2 are the initial and final 
vertices. S(g) is the symmetry number of g (considered as a directed graph). In terms 
of the s-particle distributions 

P ( r l ,  r2) = !-@ . . . 1 dr3 . . . dr, n,(r l ,  . . . , r,, n ) y ( g ) .  
g s 4  s(g) 

The equation for the symmetric case corresponding to (12) is obtained by removing 
the arrows. The low-density expansions of n u ( r l ,  . . . , r,, n )  for a gas with pair poten- 
tials is described by Uhlenbeck and Ford (1962) and their article enables contact to be 
made with the Mayer expansion of Coniglio et a1 (1977). 

Equation (13) is valid for a finite system with n finite so that all walks are of finite 
length ( s n  steps). In going to the thermodynamic limit we let n and V go to infinity 
keeping p = n/ V fixed and a given walk w E W is only considered open if it lies within 
a sphere of fixed radius centred on r l  and containing r2. Finally the radius of the 
sphere is allowed to become infinite. This procedure is important when considering 
the region of density where there are infinite clusters. 

The mean cluster size S ( r J  is the expected number of particles accessible by a walk 
from a given particle (particle 1 say) including that particle. This may be expressed in 
terms of the conditional pair connectedness 

which is the probability density that there is a particle at r2 which is accessible by a 
walk from a particle given to be at r l .  Clearly 

S(r l )  = 1 + I dr2 P ( r 2 ) r l )  (15) 

and for a homogeneous gas in the thermodynamic limit this will be independent of r l .  
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3. Formulation in k space 

In this section we assume that we have gone to the thermodynamic limit and that the 
gas is homogeneous so that n l ( r l ,  n )  = p .  y e  also assume that yl,(rl,  r,) is a function 9 
of r, -r ,  and hence P(r21rl) is a function P of r z - r l .  Taking Fourier transforms we 
have 

y l l ( r l , r , )=?( r ,  dk,  exp[-ik,,. (r, - r l~ lWll )  (16) 

and hence 

k ( k ) = j  drZexp[ik. ( r 2 - r 1 ) ] @ ( r 2 - - r I )  

where d is the dimensionality. 

i iu (K1 , .  . . , K ” )  = I . . . dr2 . . . dr, iio(rl, . . . , ru) n exp[ki.  (r,  -rl)]  (18) 
1 C V  

with 

and 

(note that C i E Y ~ i  = O ) .  

4, Special models 

In this section we consider the ideal gas and lattice gas and make contact with standard 
percolation theory for a lattice system. 

4.1. The ideal gas 

In § 2 we noted that for an ideal gas in the thermodynamic limit n, + p s .  In this limit, 
equation (13) therefore simplifies to 

A nodal point on a two-rooted graph is one through which all paths between the roots 
must pass. If g is a nodal graph (i.e. has at least one nodal point) the integral factorises 
and we can take advantage of this to reduce the size of the class of graph to be 
summed over. Let J? be the subset of @ which is non-nodal. The direct conditional 
pair connectedness C(r21rl) is defined by (21) with @ replaced by.@. Now consider the 
nodal terms in (21) and choose the nodal point closest to 1 to be 3. Since d’ and s’ may 
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be written as products over their non-nodal parts, the part of the sum coming from the 
nodal graphs contains a factor C(r31rl) and we may write 

P(r21rd = C(rzlr1) + I dr3 C( r3h)P( rzh )  (22) 

or in terms of Fourier transforms 

m F ( k )  5-. 
1 - C ( k )  

We note that c ( k )  is given by (17) with @ replaced by 2 and for the ideal gas in the 
thermodynamic limit 

& ( K 1 , .  . . , Ku)=(2T)d(u-1)pu n a(&) (24) 
iegr 

so that the wavevector at each vertex is conserved. 
The mean cluster size is given by 

s = 1 + P ( O )  = (1 -E(O))? (25) 

Equation (23) has been obtained for the more general case of an imperfect gas 
with pairwise interactions by Coniglio et a1 (1977). 

4.2. Lattice gas 

The continuum formalism may be taken over to the lattice situation by constructing 
the Wigner-Seitz cell for each lattice point. Let cl(  E L )  be the cell containing lattice 
point I and let w(r i )  be the set of cells adjacent to the cell containing ri. Thus 

and y ( g )  depends only on the cells in which the particles are situated. Replacing dri 
by ZiCL j r i E c ,  dri in (13) we obtain the probability P?2(cl, c2)  that particles 1 and 2 are 
in c1  and c2  and are connected by a path, in the form 

where AU(cI, . . . , c,, n )  is the probability of finding particles 1, . . . , U in cells c1, . . . , cu 
respectively. 

We consider two cases which turn out to be related. 
(i) Suppose that the interactions are such that not more than one particle can 

occupy a given cell and that otherwise the potential is zero. This corresponds to the 
standard 'site problem' on a lattice described in the introduction. In this case 

1: otherwise 

for c1 # c Z #  . . . # c ,  
1 

(28) &(Cl, . . . , CO, n )  = (N)u 

where N is the number of lattice sites. If P*(cl ,  c 2 )  is the probability that c1 and c2 are 
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occupied by any two particles and are connected by a path then 

In the thermodynamic limit 

where m ( g )  is the number of mappings defined in 0 1 and p = n / N  the probability of 
occupation. Equation (30) reduces to (2) when directed graphs corresponding to the 
same undirected graph are grouped together. 

In this example (15) reduces to the usual result (Essam 1972) 

S(C1) = 1 +p- l  P*(Cl, c2) 
C Z E L \ C l  

for the expected number of occupied cells connected to c 

each bond and defining adjacency by the incidence of the bonds. 
(ii) Now suppose that there are no interactions. In this case 

We note that the ‘bond problem’ may be included by drawing cells surrounding 

& ( c l ,  . . . , c,, n )  = N - ”  (32) 

and defining P(cl, c2)  to be the probability that two particles known to be in cells c1 
and c2 are connected by a path, we have 

R C l ,  c2) =N2P?2(c1, c2) 

which in the thermodynamic limit becomes 

where *(g) is now the number of mappings of g when multi-occupation is allowed 
and p = n / N .  

Examples (i) and (ii) may be related by defining p to be the probability that a cell is 
occupied by at least one particle, thus 

p = 1 -e-’. (35) 
P ( c l ,  c2 )  is now the probability of at least one path of occupied cells connecting c 1  and 
c2 given that they are occupied. Clearly therefore 

(36) -2 * 
&l, c 2 ) = p  P ( C l ,  C 2 ) l p = l - e - P .  

Thus if a low-density expansion is obtained for P up to p k  then P* may be obtained up 
to p k + 2  by substitution. 

Because of the possibility of multi-occupation e ( g )  factorises for nodal graphs and 
in parallel with (22) 
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The passage to k space follows similarly, the k sums now being over the Brillouin zone 
for the lattice. 

We note that equation (22) has no parallel in the case of P* (unless it is merely 
used as a definition of C*) and the use of the p expansion rather than the p expansion 
to obtain P* is a major advance. Similarly p * ( k )  has no simple graphi5al inter- 
pretation when the p expansion is used but it may be trivially derived from P ( k ) .  

Because of the factorisation, further renormalisation is possible for both lattice 
and continuum models along the lines described by Wortis (1974) for the king model. 
This enables an expansion in terms of elementary graphs to be made. 

5. Extension to many-particle connectedness functions 

For simplicity we consider the case of identical particles but imagine the particles to be 
labelled. Define the I-particle connectedness function P I ( r l ,  . . . , rI )  to be the proba- 
bility density that there are particles at rl, . . . , rI and that there is at least one path 
connecting the particle at rl to each of the particles at rz, . . . , r). Let Wi be the set of 
walks which begin with the particle labelled 1 and end with the particle i ( Z l )  and 
define 

yi = 1 ( - l ) ' w i ' + l  JJ y(w)  
4c w:r wi w e w :  

then 

The connecting graph G(U;=, W:) will now have 1 roots and all arcs containing 
vertex 1 will be incident outwards. The d-weight of an 1-rooted directed graph g is 
defined by 

I I 

&g)= n 1 (-1)lw:I+l :G ( i = z  U W /  1 =g. (40) 
i=Z+cWlcWi 

D K Arrowsmith (1977, private communication) has shown that again cyclic graphs 
have zero d-weight and coverable acyclic graphs have d(g)  = (-l)'(@ where c ( g )  
( = a  -U + 1) is the cyclomatic number. Combining (38), (39) and (40) we obtain the 
generalisation of (13): 

where @I is the set of I-rooted directed graphs with roots labelled 1,. . . , I and the 
intermediate vertices which are considered indistinguishable are labelled I + 1, . . . , U 
for the purpose of integration. In calculating s'(g) only symmetry operations on the 
internal vertices are counted. 

The integral of the conditional 1-particle connectedness is related to the moments 
of the distribution of s (the number of particles connected to the particle at rl 
including that particle) by 

I drZ . . . drtPt(r2, . . . , rl(rl) = ((s - 1)r-l) (42) 
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In the thermodynamic limit for a homogeneous gas, the Fourier transform 

R+l(k l , .  . . , kr) 

= 1 . . . I dr2 . . . drI+] exp[ikm. (rm+i-ri)]Pi+i(r2., . . . , rl+llrd (44) 
m = l  

is given by (17) with @ replaced by 41 and 
I 

~i = kij- C kj,i + km(~m+l,i-~1,i)- 
( i , j ) E d  ( j , i ) E d  m = l  

The case of a lattice gas may be treated as in Q 4. 

(45) 

6. Summary and applications 

We have derived a general expression for the 1 -particle connectedness function 
(equation (41) and equation (13) for 1 = 2) for a system of particles the positions of 
which are given by a set of arbitrary distribution functions (equation (3)). The 
condition (equation (4)) which specifies when two particles are connected may also be 
chosen freely. The theory therefore includes both lattice and continuum percolation 
theory. The latter may be thought of as applying to clustering in a gas but also applies 
to non-crystalline solids. Since the distributions are arbitrary it is possible to include 
the correlations which would occur in an interacting system. 

The formulation may be used as a basis for rigorous results. Existence and 
analyticity properties in the infinite-volume limit may be obtained and the Ornstein- 
Zernike form established for the pair connectedness at sufficiently low density (D B 
Abraham 1977, private communication). 

In the case when the particles are distributed independently a partial factorisation 
of the integral in (41) is possible thereby allowing renormalisation techniques to be 
used. For example equation (23) represents a partial renormalisation and is a 
generalisation of the k = 0 result of Haan and Zwanzig (1977). This is a major 
advance over the previous lattice theory (Essam 1972) in which excluded volume 
effects had to be allowed for. 

Three applications of renormalisation are envisaged. Standard approximations in 
imperfect gas theory (e.g. the hypernetted chain approximation (Rice and Gray 1965)) 
can be used. It may be possible to extend current expansions of the pair connected- 
ness for lattice systems (Dunn et a1 1975, Cox and Essam 1976) since a much smaller 
graph list is required. Equations (17) and (45) may be used as a starting point for 
renormalisation group theory (Essam and Place 1977). 
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